Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541389

RESUMO

Nowadays, there is a need for new sources of noble metals due to their dwindling natural resources. This paper presents studies on the sorption of noble metals such as Au(III), Pt(IV), Pd(II) and Rh(III) from model chloride solutions on a newly prepared Amberlite XAD-16-Aliquat 336 sorbent. A "warm impregnation" method without the use of toxic organic solvents was applied to impregnate the polymer matrix. The influence of such factors as hydrochloric acid concentration, sorbent mass and phase contact time was investigated. Kinetic as well as adsorption isotherm studies were carried out. The sorption capacity of the synthesized sorbent was Au(III)-94.34 mg/g, Pt(IV)-45.35 mg/g and Pd(II)-46.03 mg/g. Based on thermodynamic considerations, their sorption proved to be endothermic, as the values of ΔH° > 0. Sorption was spontaneous and favourable (ΔG° < 0). After leaching the RAM module, there was obtained a real solution, in which the metal contents were determined: 38.10 mg/g of gold and 1.76 mg/g of palladium. Totals of 99.9% of gold and 45.4% of palladium were removed from the real leaching solution, with other elements in the solution.

2.
Chemphyschem ; 25(4): e202300817, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38100298

RESUMO

Precious metals are used in many branches of industries. Due to their rarity and diminishing natural resources, more and more new methods are being sought to recover them from secondary sources, which can be electronic waste or spent car exhaust converters. This paper presents the research on the recovery of precious metals from chloride solutions using the Aliquat 336-impregnated Lewatit VP OC 1026 sorbent. The study used a warm impregnation method without toxic solvents, which is beneficial for the environment. The maximal sorption capacities obtained for model solutions in 0.1 M HCl were: 95.6 mg/g for gold, 38.2 mg/g for palladium, and 36.2 mg/g for platinum. There were studied: kinetics and thermodynamics of sorption, as well as amounts of the sorbent, effects of phase contact time and HCl concentration on the sorption of precious metals. Positive values of enthalpy change ΔH° validate that the process is endothermic. The research was also carried out on a real leaching solution obtained by digesting a spent catalytic converter, containing small amounts of platinum group metals. Desorption of precious metal ions was conducted using 1 M thiourea in 1 M hydrochloric acid. The obtained impregnated sorbent proved to be effective for sorption of Au(III), Pd(II), Pt(IV) ions.

3.
Molecules ; 28(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630291

RESUMO

Noble metals (NM) such as gold, platinum, palladium, and rhodium are widely applied in the electronics and automotive industries. Thus, the search for cheap and selective sorbents for noble metals is economically justified. Nitrolite does not sorb noble metal ions. A new impregnated sorbent was prepared. The natural sorbent Nitrolite was impregnated with Aliquat 336 using a new warm impregnation method. After the impregnation process, Nitrolite adsorbed platinum(IV), palladium(II), and gold(III) ions from the chloride solutions. The values of the sorption capacity for palladium(II) and platinum(IV) ions were 47.63 mg/g and 51.39 mg/g, respectively, from the 0.1 M HCl model solution. The sorption capacity for gold(III) ions was estimated to be 73.43 mg/g from the 0.1 M HCl model solution. An exhausted catalytic converter was leached, and platinum(IV), palladium(II), and rhodium(III) were transferred to the chloride solution. The impregnated sorbent Nitrolite-Aliquat 336 was used in the investigations of the platinum(IV), palladium(II), and rhodium(III) ions' sorption from a real solution. The impregnated sorbent Nitrolite-Aliquat 336 proved to be suitable for the recovery of platinum(IV) and palladium(II) ions, whereas rhodium ions were not sorbed from the leached solutions. Notably, 1 M thiourea in the 1 M HCl solution desorbed platinum(IV), palladium(II), and gold(III) above 94%.

4.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769929

RESUMO

Modular connectors are applied by computer users, and they can be metallic secondary sources containing metals such as gold and copper. Because gold is a micro-component, the solution obtained after the pin digestion contains a low concentration of gold(III) ions, and efficient and selective sorbent should be used for gold(III) ion recovery. The selective removal of small amounts of gold(III) from 0.001-6 M hydrochloric acid solutions using pure and solvent-impregnated macroporous polystyrene crosslinked with divinylbenzene sorbents (Purolite MN 202 and Cyanex 272) is presented. Gold(III) ions were recovered effectively from the chloride solution after the digestion of the modular connector RJ 45 (8P8C) using Purolite MN 202 after the impregnation process. The dependence of the recovery percentage (R%) of gold(III) on the contact time was determined. The highest value of gold(III) ion sorption capacity (259.45 mg·g-1) was obtained in 0.001 M HCl for Purolite MN202 after the Cyanex 272 impregnation. The results can be applied to gold recovery from e-waste. The presented method of gold recovery does not generate nitrogen oxides and does not require the use of cyanides.

5.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080204

RESUMO

Adsorption abilities of weakly (Purolite A830), weakly basic/chelating (Purolite S984), and strongly basic (Lewatit MonoPlus SR7, Purolite A400TL, Dowex PSR2, Dowex PSR3) ion exchange resins of different functional groups and microporous Lewatit AF5 without functional groups towards vanadium(V) ions were studied in batch and column systems. In the batch system, the influence of the sorbent mass (0.01-0.1 g), pH (2-10), the phase contact time (1-1440 min),and the initial concentration (5-2000 mg/L) were studied, whereas in the column system, the initial concentrations (50, 100, and 200 mg/L) with the same bed volume and flow rate (0.4 mL/min) were studied. Desorption agents HCl and NaOH of 0.1-1 mol/L concentration were used for loaded sorbent regeneration. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models as well as the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models were used to describe kinetic and equilibrium data to acquire improved knowledge on the adsorption mechanism. The desorption efficiency was the largest using 0.5 mol/L NaOH for all sorbents under discussion. Purolite S984, Purolite A830, and Purolite A400TL, especially Purolite S984, are characterized by the best removal ability towards vanadium(V) from both model and real wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Cinética , Hidróxido de Sódio , Soluções , Termodinâmica , Vanádio , Água , Poluentes Químicos da Água/química
6.
Molecules ; 27(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458628

RESUMO

The selective removal of Cu(II) in the presence of sodium dodecylobenzene sulfonate from acidic effluents was made using the adsorption and micellar-enhanced ultrafiltration methods. Lewatit MonoPlus TP220 showed the best adsorption behavior in the systems containing Cu(II) in the presence of ABSNa50 surfactant compared to the other adsorbents (removal efficiency ≈ 100%, sorption capacity ≈ 10 mg/g). The kinetics followed the pseudo-second order kinetic equation. The Langmuir adsorption capacities were 110 mg/g (the system with ABSNa50 above CMC) and 130.38 mg/g (the system with ABSNa50 below CMC). The working ion exchange capacities were Cw = 0.0216 g/mL and Cw = 0.0135 g/mL. The copper removal by the micellar-enhanced ultrafiltration method was 76.46% (0.1 mol/L HCl).


Assuntos
Cobre , Poluentes Químicos da Água , Ácidos , Adsorção , Alcanossulfonatos , Concentração de Íons de Hidrogênio , Íons , Cinética , Micelas , Sódio , Ultrafiltração , Poluentes Químicos da Água/análise
7.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408494

RESUMO

The adsorption ability of Lewatit S5528 (S5528) resin for C.I. Acid Green 16 (AG16), heavy metals (Zn(II), Cu(II) and Ni(II)) and phenol removal from single-component aqueous solutions is presented in this study to assess its suitability for wastewater treatment. Kinetic and equilibrium studies were carried out in order to determine adsorption capacities, taking into account phase contact time, adsorbates' initial concentration, and auxiliary presence (NaCl, Na2SO4, anionic (SDS) and non-ionic (Triton X100) surfactants). The pseudo-second-order kinetic model described experimental data better than pseudo-first-order or intraparticle diffusion models. The adsorption of AG16 (538 mg/g), phenol (14.5 mg/g) and Cu(II) (5.8 mg/g) followed the Langmuir isotherm equation, while the uptake of Zn(II) (0.179 mg1−1/nL1/n/g) and Ni(II) (0.048 mg1−1/nL1/n/g) was better described by the Freundlich model. The auxiliary's presence significantly reduced AG16 removal efficiency, whereas in the case of heavy metals the changes were negligible. The column studies proved the good adsorption ability of Lewatit S5528 towards AG16 and Zn(II). The desorption was the most effective for AG16 (>90% of dye was eluted using 1 mol/L HCl + 50% v/v MeOH and 1 mol/L NaCl + 50% v/v MeOH solutions).


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Resinas de Troca Aniônica , Concentração de Íons de Hidrogênio , Cinética , Corantes Verde de Lissamina , Fenol , Cloreto de Sódio , Poluentes Químicos da Água/análise , Zinco
8.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160907

RESUMO

The recent increase in interest in rare earth elements is due to their increasing use in many areas of life. However, along with their increasing popularity, the problem of their natural resources availability arises. In this study, an alginate-lignin composite (ALG-L) was fabricated and tested for adsorptive abilities of the rare earth elements (La(III), Ce(III), Pr(III), and Nd(III)) from aqueous solutions. The characterization of the newly synthetized calcium alginate-lignin composite was performed using ATR/FT-IR, SEM, EDX, OM, AFM, XRD, BET, sieve analysis and pHpzc measurements. The adsorption mechanism of the ALG5L1 composite for REEs was analyzed through a series of kinetic, equilibrium and thermodynamic adsorption experiments. Under the optimum sorption conditions, i.e., sorbent mass 0.1 g, pH 5.0, temperature 333 K, the maximum adsorption capacities of the ALG5L1 composite for La(III), Ce(III), Pr(III), and Nd(III) reached 109.56, 97.97, 97.98, and 98.68 mg/g, respectively. The desorption studies indicate that the new calcium alginate-lignin composite is characterized by good recycling properties and can be also reused. To sum up the advantages of low cost, easy synthesis, high adsorption efficiencies and reusability indicate that the ALG5L1 composite has great application perspectives for REEs recovery.

9.
Environ Res ; 191: 110171, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919960

RESUMO

Increasing the number of applications of rare earth elements (REEs) has led to increased release of these metals into the environment. Removal of REEs from e-wastes is very important considering the increasing demand for these elements, the limited resource availability of them as well as the significant environmental issues. In this present study, optimization of the La(III) ions sorption from acidic solutions on chelating ion exchangers containing different functional groups, i.e. Amberlite IRC748, Purolite S930, Lewatit® Monoplus TP208, Amberlite IRC747, Purolite S940, and Purolite S950, was carried out. The sorption data was analyzed using the Lagergren pseudo-first order, Ho and McKay pseudo-second order, Weber-Morris intraparticle diffusion, Boyd kinetic models, pore and film diffusion coefficients as well as the Langmuir, Freundlich, and Temkin isotherm models. Additionally, thermodynamic parameters and regeneration abilities of chelating ion exchangers were evaluated. The maximum recovery of La(III) ions was found for HNO3 concentration equal to 0.2 mol/dm3. The La(III) ions sorption was fast and sorption equilibrium was achieved after about 60 min. The best fitting for the lanthanum(III) ions sorption was obtained using the pseudo-second order kinetic and Langmuir isotherm models. Moreover, breakthrough curves were obtained from dynamic studies. The physicochemical characterization places special emphasis on determination of chemical composition of ion exchangers using ATR/FT-IR and XPS spectroscopy. Furthermore, characterization parameters of ion exchangers such as surface area and porosity (pore size), point of zero charge, and thermal stability were estimated. Chelating ion exchangers with aminophosphonic functional groups are characterized by the best adsorption properties towards La(III) ions so they could be used for the recovery of rare earth elements from spent battery solutions.


Assuntos
Lantânio , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
10.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824060

RESUMO

The recovery of La(III) and Ni(II) ions by a macroporous cation exchanger in sodium form (Lewatit Monoplus SP112) has been studied in batch experiments under varying HNO3 concentrations (0.2-2.0 mol/dm3), La(III) and Ni(II) concentrations (25-200 mg/dm3), phase contact time (1-360 min), temperature (293-333 K), and resin mass (0.1-0.5 g). The experimental data revealed that the sorption process was dependent on all parameters used. The maximum sorption capacities were found at CHNO3 = 0.2 mol/dm3, m = 0.1 g, and T = 333 K. The kinetic data indicate that the sorption followed the pseudo-second order and film diffusion models. The sorption equilibrium time was reached at approximately 30 and 60 min for La(III) and Ni(II) ions, respectively. The equilibrium isotherm data were best fitted with the Langmuir model. The maximum monolayer capacities of Lewatit Monoplus SP112 were equal to 95.34 and 60.81 mg/g for La(III) and Ni(II) ions, respectively. The thermodynamic parameters showed that the sorption process was endothermic and spontaneous. Moreover, dynamic experiments were performed using the columns set. The resin regeneration was made using HCl and HNO3 solutions, and the desorption results exhibited effective regeneration. The ATR/FT-IR and XPS spectroscopy results indicated that the La(III) and Ni(II) ions were coordinated with the sulfonate groups.


Assuntos
Lantânio/isolamento & purificação , Níquel/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Concentração de Íons de Hidrogênio , Troca Iônica , Lantânio/análise , Níquel/análise , Temperatura , Termodinâmica , Poluentes Químicos da Água/análise
11.
Materials (Basel) ; 13(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024066

RESUMO

Nowadays, the contamination of water with phenol is a serious environmental problem. This compound occurs very often with heavy metal ions which makes purification of water even more difficult. This article presents the problem of the removal of phenol from aqueous solutions in the presence of Cu(II) ions on synthetic zeolite NaP1 and zeolite NaP1 modified with chitosan. The adsorbents were determined with the use of Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption/desorption isotherm, and scanning electron microscopy (SEM). The studies on isotherms and batch kinetics under diversified experimental conditions with respect to initial concentration, contact time, and pH were discussed. Both Cu(II) and phenol adsorption increases with the initial concentration. Different isotherm models correspond well with the data acquired through experiments. The kinetics of adsorption follows the pseudo-second order rate equation. The studies indicate that the obtained sorbents can be employed for efficient removal of phenol from wastewater in the presence of Cu(II) ions.

12.
Nanoscale Res Lett ; 11(1): 152, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27000020

RESUMO

Magnetic hybrid nanocomposite material based on the kraft lignin was prepared by the co-precipitating method. Kraft lignin was modified by iron nanooxide in order to enhance its sorption properties towards heavy metal ions. The composite material was characterized by physicochemical methods such as BET N2, ATR-FTIR, TGA, DSC, pHpzc, XRD and SEM. Its adsorption behaviour was studied using the batch mode by varying different parameters like pH, initial concentration of metal ions and shaking time as well as the presence of interfering ions. Adsorption of Cu(II), Cd(II) and Pb(II) ions from the aqueous solutions was studied in comparison with the commercial kraft lignin. The adsorption capacity and kinetic sorption characteristics of the composite material were determined.

13.
Anal Chim Acta ; 806: 97-100, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24331044

RESUMO

Hafnium at the very low level of 1-8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29-253%). The ion exchange method exploiting Diphonix(®) resin proved sufficient efficiency in Zr-Hf separation when the initial concentration ratio of the elements ([Zr]0/[Hf]0) ranged from 1200 to ca. 143,000.

14.
Environ Technol ; 32(5-6): 569-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21877538

RESUMO

The performance of polystyrene anion exchangers in purifying wastewaters containing metatartaric acid and heavy metal ions (especially those from electroless plating processes) was investigated. The following anion exchangers were selected: Lewatit MonoPlus M 500, Lewatit MonoPlus MP 64, Lewatit MP 62 and Amberlite IRA 402. A batch method was used to study the influence of: phase contact time (1-120 min); solution pH (2-9); concentration of initial heavy metal Cu(II), Zn(II), Co(II) and Ni(II) complexes (1.25 x 10(-4) M to 8.0 x 10(-3) M); temperature (303-333K); and interfering ions (Cl-, NO3-, SO4(2-), Ca2+, Mg2+). The amounts of Cu(II), Zn(II), Co(II) and Ni(II) complexes with metatartaric acid sorbed at equilibrium using the strongly basic anion exchanger Lewatit MonoPlus M 500 were equal to 7.25 mg/g, 3.21 mg/g, 3.78 mg/g and 3.98 mg/g, respectively. The equilibrium sorption capacity increased slightly with increasing temperature. The optimal pH sorption was found to be 6.5. The experimental data were analysed using the Langmuir and Freundlich models. The maximum adsorption capacities q(0) determined from the Langmuir adsorption equation equal to 7.53 mg/g, 3.75 mg/g, 3.55 mg/g and 4.60 mg/g were in good agreement with the experimental values for Lewatit MonoPlus M 500. The kinetic data obtained at different concentrations were modelled using pseudo first order, pseudo second order and intraparticle diffusion equations. The experimental data were well described by the pseudo second order kinetic model.


Assuntos
Resinas de Troca Aniônica/química , Complexos de Coordenação/química , Metais Pesados/química , Poliestirenos/química , Tartaratos/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Environ Technol ; 32(7-8): 805-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21879555

RESUMO

The paper presents experimental results and their evaluation for the sorption of copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid on chelating ion exchangers with different functional groups. The literature lacks the data concerning sorption of heavy metal ions in the presence of metatartaric acid on ion exchangers. The effect of important parameters such as the value of pH, the metal(II) ion and ligand concentration as well as their molar ratio and the type of functional group of the ion exchanger used was studied. It was found that the time of 60 min was sufficient for sorption to attain equilibrium. The equilibrium sorption capacities for copper(II), zinc(II), cobalt(II) and nickel(II) complexes with metatartaric acid were 37.35 mg/g, 32.02 mg/g, 32.78 mg/g and 28.31 mg/g on Lewatit TP 207 and 42.15 mg/g, 34.32 mg/g, 27.76 mg/g and 21.70 mg/g on Lewatit TP 260, respectively. The sorption optimum pH was 7. Temperature does not affect the sorption process significantly. The sorption data were well fitted by the Langmuir adsorption model whereas kinetics of the sorption process was well described by the pseudo second order kinetics equation.


Assuntos
Quelantes/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Tartaratos/química , Simulação por Computador , Íons/química , Íons/isolamento & purificação , Cinética , Modelos Químicos
16.
Environ Technol ; 30(10): 1059-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19886431

RESUMO

The macroporous polystyrene anion exchangers Amberlite IRA-900 and Amberlite IRA-910 were used in order to remove sulphonated azo dyes (Allura Red and Sunset Yellow) from aqueous solutions of 100-500 mg/L concentrations. The experimental data obtained at 100, 200, 300 and 500 mg/L initial concentrations at 20 degrees C were applied to the pseudo-first-order, pseudo-second-order and Weber-Morris kinetic models. The calculated sorption capacities (qe,cal) and the rate constant of the first-order adsorption (k1) were determined. The pseudo-second-order kinetic constants (k2) and capacities were calculated from the plots of t/qt vs t, 1/qt vs 1/t, 1/t vs 1/qt, qt/t vs qt and 1/qe-qt vs t for type 1, type 2, type 3, type 4 and type 5 of the pseudo-second-order expression, respectively. The influence of phase contact time, initial dye concentration, solution pH and temperature on Allura Red and Sunset Yellow removal was also discussed.


Assuntos
Resinas de Troca Aniônica/química , Compostos Azo/isolamento & purificação , Resinas Sintéticas/química , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Corantes/química , Corantes/isolamento & purificação , Concentração de Íons de Hidrogênio , Resíduos Industriais , Troca Iônica , Cinética , Modelos Químicos , Análise de Regressão , Temperatura
17.
J Hazard Mater ; 172(1): 289-97, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19660863

RESUMO

The sorption of SPANDS from aqueous solution onto the macroporous polystyrene anion exchangers of weakly basic Amberlyst A-21 and strongly basic Amberlyst A-29 in a batch method was studied. The effect of initial dye concentration and phase contact time was considered to evaluate the sorption capacity of anion exchangers. Equilibrium data were attempted by various adsorption isotherms including the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models. A comparison of kinetic models applied to the adsorption rate constants and equilibrium sorption capacities was made for the Lagergren first-order, pseudo second-order and Morris-Weber intraparticle diffusion kinetic models. The results showed that the adsorption isotherm is in the good agreement with the Langmuir equation and that the adsorption kinetics of SPADNS on both anion exchangers can be best described by the pseudo second-order model.


Assuntos
Ânions , Compostos Azo/química , Cromatografia por Troca Iônica/instrumentação , Naftalenossulfonatos/isolamento & purificação , Poliestirenos/química , Estirenos/química , Purificação da Água/métodos , Adsorção , Compostos Azo/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Difusão , Desenho de Equipamento , Cinética , Teste de Materiais , Modelos Químicos , Naftalenossulfonatos/química , Soluções , Fatores de Tempo , Poluentes Químicos da Água/isolamento & purificação
18.
J Hazard Mater ; 172(2-3): 868-74, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19692176

RESUMO

In the present study, the gel anion exchanger Purolite A-850 of N(+)(CH(3))(3) functional groups was used in order to remove the acidic dye (Acid Blue 29) from aqueous solutions. Batch experiments were conducted to study the effect of phase contact time (1-180 min), initial concentration of dye (100-500 mg/L), solution pH (1-8), anion exchanger dosage (0.25-1.0 g) as well as temperature (20-40 degrees C). The contact time necessary to reach equilibrium was 40 min with the exception for the solution of the initial concentration 500 mg/L. The amounts of Acid Blue 29 adsorbed at equilibrium using the strongly basic anion exchanger were equal to 9.97, 19.97, 29.96 and 49.90 mg/g for the dye solutions of the initial concentrations 100, 200, 300 and 500 mg/L, respectively. The equilibrium sorption capacity slightly increased when the temperature of dye solution increased from 20 to 40 degrees C. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to the Langmuir isotherm and the monolayer adsorption capacity was found to be 83.303 mg/g at 20 degrees C. The value of R(L) was equal to 0.00054 (favourable). The kinetic data obtained at different concentrations were modeled using the pseudo-first order, pseudo-second order and intraparticle diffusion equations. The experimental data were well described by the pseudo-second order kinetic model.


Assuntos
Compostos Azo/isolamento & purificação , Corantes/isolamento & purificação , Resinas de Troca Iônica/química , Naftalenos/isolamento & purificação , Adsorção , Géis , Troca Iônica , Cinética
19.
J Colloid Interface Sci ; 333(2): 448-56, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19269648

RESUMO

The main propose of this work was to describe the basic parameters of electrical double layer structures of the ion exchanger/NaCl before and after the sorption process of Pb(II) and Cd(II) ions from aqueous solutions in the presence of the complexing agent EDTA (ethylenediaminetetraacetic acid). In the studies the following ion exchangers were used: cation exchangers Micro-ionex (in the H(+) and NH(+)(4) forms), Dowex 50W x 4 (in the H(+) form), and Dowex 50W x 12 (in the H(+) form); anion exchangers Dowex 1 x 4 (in the Cl(-) form) and Dowex 1 x 8 (in the Cl(-) form). Study of the physicochemical properties of the sample surface was carried out. The influence of ionic strength, pH, and solution interface was investigated. Electrophoretic mobility, surface charge density, and parameters for different concentrations of the electrolytes under question were presented. pH was changed from 3 to 10. The studies were carried out for the M(II)-EDTA = 1:1 system. The effects of the concentration of the solution containing the above-noted complexes and of the ion exchange/solution phase contact time on sorption capacities of the ion exchangers under consideration were studied. Kinetic parameters of the sorption process were also determined.


Assuntos
Cádmio/isolamento & purificação , Ácido Edético/química , Resinas de Troca Iônica/química , Chumbo/isolamento & purificação , Cloreto de Sódio/química , Adsorção , Cádmio/química , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Chumbo/química , Propriedades de Superfície , Água/química
20.
J Hazard Mater ; 164(2-3): 502-9, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18809256

RESUMO

The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.


Assuntos
Resinas de Troca Aniônica/química , Tartrazina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Poliestirenos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...